

A Toshiba Group Company

Intrepid 3600 Enterprise SSD

2.5" Solid-State Drive

IT3RSK41MT3XX-xxxx

The OCZ 2.5" Intrepid 3000 Series of Solid State Drives are designed specifically to address Enterprise storage and computing applications where demanding performance, reliability, and the total cost of ownership (TCO) are major factors.

SSD Datasheet

OCZ Intrepid 3600 SATA Solid State Drive

Part Number	Description	UPC
IT3RSK41MT300-0100	OCZ Intrepid 3600 2.5" SATA III 100GB	842024034360
IT3RSK41MT300-0200	OCZ Intrepid 3600 2.5" SATA III 200GB	842024034377
IT3RSK41MT310-0400	OCZ Intrepid 3600 2.5" SATA III 400GB	842024034384
IT3RSK41MT320-0800	OCZ Intrepid 3600 2.5" SATA III 800GB	842024034391

Product Specifications

Intrepid 3600

- Available in 2.5" Form Factor
- SATA III / 6Gb/s Interface
- Capacity: 100GB, 200GB, 400GB and 800GB
- Components: 19nm MLC NAND Flash Memory
- Security: AES 256-bit Encryption
- Bandwidth Performance Specifications^{1,3,4}
 - Sustained Sequential Read: 510 MB/s
 - Sustained Sequential Write: 460 MB/s
- Read and Write IOPS specifications (Full LBA Range, Iometer*Queue Depth 32)^{1,2,4}
 - Sustained Random 4KB Reads: 89K IOPS
 - Sustained Random 4KB Writes: 38K IOPS
- Compatibility
 - SATA Revision 3.0, compatible with SATA 1.5 Gb/s, 3 Gb/s and 6Gb/s interface rates
 - ATA/ATAPI-8 Compliant
 - _ Enterprise SMART ATA feature set
 - Native Command Queuing (NCQ) command set
 - Data set management TRIM Command _
- **Power Management**
 - 5 V SATA Supply Rail
 - Supports ATA Power Management Specification
 - OS-Aware Hot Plug/Removal
- Power Specifications⁵
 - Active: up to 3.4W (Typical)
 - Idle: up to 2 W (Typical)

- Temperature
 - Operating⁶: 0°C to 70°C
 - Non-Operating: -45°C to 85°C
 - Temperature monitoring and logging _
- Reliability
 - Mean Time Between Failures (MTBF): _ 2 Million Hours
- Endurance Rating⁷
 - 100GB: 178 TBW —
 - 200GB: 356 TBW
 - 400GB: 713 TBW
 - 800GB: 1426 TBW _
- Bit Error Rate (BER): 1 sector per 10¹⁷ bits read
- End to End data protection via CRC
- . Internal RAID recovery in the event of catastrophic failures
- PFAIL Protection full in flight data protection for unexpected system power loss
- **Consistent latency IO operations**
- Shock (Operating and non-operating)
 - _ 1000G/0.5 msec.
- Vibration
 - Operating Range 2.17 GRMS (5-700 Hz) _
 - Non-operating: 3.13 GRMS (5-800 Hz) _
- Altitude
 - Operating Range: -1500 ft. to 15,000 ft.
 - Non-operating: -1000 ft. to 40,000 ft.
- Product Ecological Compliance
 - _ RoHS
- **Certifications and Declarations:**
 - CE, FCC, KCC, BSMI, C-TICK, VCCI, UL, WEEE
 - Services and Support: 5 years

1. Performance values vary by capacity

2. Based on Random 4KB QD32 workload, measurement taken once the

workload has reached steady state

3. Based on 128KB sequential transfer, measurement taken once the workload has reached steady state

4. Sustained performance measured using IOmeter* with Queue Depth 32.

Measurements are performed using SNIA based metrics.

5. Power based on 5V supply and highest capacity

6. As measured by temperature sensor

7. Subject to change

_			_
Par	't Nun	nber Decoder:	7
1.	Intr	oduction	8
	1.1	Product Overview	8
	1.2	Block Diagram	9
2.	Pro	duct Regulatory Certification and Compliance	10
3.	Pro	duct Specifications	11
	3.1	Capacity	11
	3.2	Performance	12
4.	Reli	ability	13
	4.1	Endurance Rating	13
	4.2	Reliability Specifications	13
5.	Elec	ctrical Characteristics	14
	5.1	Supply Voltage	14
	5.2	Power Consumption: (5V Supply)	14
6.	Env	ironmental Specifications	15
	6.1	Temperature, Shock, Vibration, Altitude	15
	6.2	Acoustics	16
	6.3	Emissions	16
7.	Add	litional Features	17
	7.1	Encryption	17
	7.2	Power Failure Protection	17
	7.3	Level RAID Protection	17
	7.4	Temperature Monitor and Logging	17
	7.5	Device Activity Signal (DAS) indication	18
8.	Per	formance Optimization	18
	8.1	TRIM	18
9.	Pin	and Signal Descriptions	18
	9.1	Pin Locations	18
	9.2	Hot Plug Support	19

5

Drive

	9.3	Signal Description Table
10.	ATA	Support
	10.1	ATA Command Support21
	10.2	IDENTIFY Device Data22
	10.3	Power Management Support26
	1	0.3.1 ATA Power Modes26
	1	0.3.2 SATA Link Power States
11.	S.M.	A.R.T. Attribute Support
12.	Med	hanical Specifications29
13.	Glos	sary29
14.	Revi	sion History

Intrepid 3600

Part Number Decoder:

# of chars	3	1	1	1	1	1	1	1	1	1	1	1	4	2 (OPTIONAL))
	[xxx]	[x]	[x]	[x]	[x]	[x]	[x]	[x]	[x]	[x]	[x]	-	[xxxx]	[xx]	
					Form Factor:										-
		Level:			1:1.8"								Density:		
		C: Commercial			2: 2.5" 5mm								0200: 200GB		
		R: Reliability			3: 2.5" 7mm			Flash Vendor					0500: 500GB		
					4: 2.5" 9.5mm			X: Unlocked			Revision**		1000: 1.0TB		
	Product:		Interface:		5: 2.5" 15mm			M: Micron					1200: 1.2TB		
	IT3: Intrepid 3		S: SATA		6: 3.5"	Controller Count	t	N: Intel					1500: 1.5TB		
	DEN: Deneva 1		A: SAS		A: HHHL	1:1		T: Toshiba					2000: 2.0TB		
	D2: Deneva 2 [no longer conforms]	P: PCIe		B: HHFL	2:2		H: Hynix					3200: 3.2TB		
	DNx: Future D	eneva (e.g. "DN3")			C: FHHL	4:4	Flash Type:	S: Samsung							
	ITD: Intrepid			Interface:	D: FHFL	8:8	S: SLC	D: Sandisk						Temp:	
	ZD4: Z-Drive R	4		B: 1.5Gb SATA	E: mSATA		M: MLC	Z: OCZ	Flash Node	Flash Part # Detail*				IT: Industrial	
	TL2: Talos 2			D: 2.5b PCI-e 1.0			E: eMLC		0: 24nm	0-5 : Gen.1 Tosh. 19nm				ET: Extended	
				E: 3Gb SATA 2/SAS 3			A: Async MLC	:	1: 22nm						
				F: 5Gb PCI-e 2.0			T: TLC		2: 20nm						
				K: 6Gb SATA 3/SAS 6					3: 19nm						
				L: PCIe Gen 3.0 x4					4: 16nm						
				M: PCIe Gen 3.0 2x2											
				N: PCIe Gen 3.0 x8											
				O: PCIe Gen 3.0 x16											
				P: 16Gb/s SATA Express											
				Q: 12Gb SAS x4											
				R: 12Gb SAS 2x2											

1. Introduction

This document describes the specification and capabilities of OCZ Intrepid 3600 Solid State Drives. The OCZ Intrepid 3600 SSDs are optimized to deliver high performance and reliability that is required for mission critical enterprise computing applications.

1.1 Product Overview

The Intrepid 3600 SSDs deliver the industry's best steady state performance, with highly developed flash management capabilities that extends NAND flash life and enhance drive reliability.

Built with the Marvell[®] 88SS9187 controller combined with OCZ's optimized firmware architecture, Intrepid 3600 SSD delivers data at a high-level of performance, with consistent IO (Input/Output) latency response designed to dramatically improve efficiency and application performance. The drive also comes with a built in full Power Fail protection that protects in-flight data during unexpected system power losses.

This 2.5" form factor SSD product has a Serial ATA-6Gb/s interface and it is designed using Toshiba 19nm MLC NAND flash memory available in 100GB, 200GB, 400GB, 800GB capacities.

OCZ Intrepid 3600 SSD's offers these key features:

- Comprehensive S.M.A.R.T. attributes
- Optimized End-to-End data protection via CRC
- Internal RAID recovery mechanism in the event of catastrophic failures
- Full in-flight data protection at the event of sudden power loss
- UBER: 10¹⁷ bits read
- Temperature Sensor for monitoring and logging
- Inrush current management
- AES 256-bit Encryption
- 1 DWPD
- Backed by a 5 year warranty

1.2 Block Diagram

2. Product Regulatory Certification and Compliance

Table 1.

Certification/Compliance	Description
CE Compliant	Low Voltage DIRECTIVE 2006/95/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 12 December 2006, and EMC Directive 2004/108/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 15 December 2004.
FCC Compliant B	FCC Class B devices are those that are for use in a commercial. Industrial or business environment. Class B devices are those that are marketed for use in the home.
KC mark (Korea Certification)	Compliance with paragraph 1 of Article 11 of the Electromagnetic Compatibility Control Regulation and meets the Electromagnetic Compatibility (EMC) Framework requirements of the Radio Research Laboratory (RRL) Ministry of Information and Communication Republic of Korea.
BSMI	Bureau of Standards, Metrology, and Inspection (BSMI) is required for electrical, mechanical, and chemical products.
С-ТІСК	Compliance with the Australia/New Zealand Standard AS/NZS3548 and Electromagnetic Compatibility (EMC) Framework requirements of the Australian Communication Authority (ACA).
VCCI	Voluntary Control Council for Interface to cope with disturbance problems caused by personal computers or facsimile.

RoHS Compliant	Restriction of Hazardous Substance Directive.
UL Recognized	Underwriters Laboratories, Inc., Bi-National Component Recognition, UL-60950-1, 2 nd Edition,2007-03-27 (Information Technology Equipment-Safety – Part 1: General Requirements) CSA C22.2 No.60950-1-07, 2 nd Edition, 2007-03 (Information Technology Equipment – Safety – Part 1: General Requirements)
WEEE	The Waste Electrical and Electronic Equipment Directive (WEEE Directive) is the European Community directive 2002/96/EC on waste electrical and electronic equipment.

3. Product Specifications

3.1 Capacity

Table 2.

RAW Capacity	Usable Capacity	Total User Addressable Sectors in LBA Mode		
128GB	100GB	195,371,568		
256GB	200GB	390,721,968		
512GB	400GB	781,422,768		
1024GB	800GB	1,562,824,368		

Notes: 1GB = 1billion bytes, actual formatted capacity less

LBA count shown represents total user storage capacity and will remain the same throughout the life of the drive. The total usable capacity of the SSD may be less than the total physical capacity because a small portion of the capacity is used for NAND flash management and maintenance purposes.

3.2 Performance

Table 3. Maximum Sequential Read and Write Bandwidth

Motric	Unito	OCZ Intrepid 3600					
wetric	Onits	100GB	200GB	400GB	800GB		
Max Read	MB/s	510	540	540	530		
Max Write	MB/s	300	440	490	490		

Notes: Maximum performance measured using ATTO Benchmark Version 2.47

|--|

Metric	Unite	OCZ Intrepid 3600				
Wethe	Onits	100GB	200GB	400GB	800GB	
4KB Random Read		91,600	93,100	91,900	90,700	
4KB Random Write	1043	74,400	82,200	82,100	82,400	

Notes:

Performance measured using IOmeter*, with Queue Depth 32, 1 minute. Measurements are performed on a full Logical Block Address (LBA) using 4KB Random Writes/Reads

	Units	OCZ Intrepid 3600					
Metric		100GB	200GB	400GB	800GB		
128K Sequential Read ¹	MB/s	400	400	510	500		
128K Sequential Write ¹	MB/s	260	400	460	460		
4K Random Read ¹	IOPS	78,000	92,000	89,000	89,000		
4K Random Write ¹	IOPS	21,000	31,000	38,000	38,000		

Table 5.Sustained Performance

Notes: ¹Sustained performance measured using IOmeter* with Queue Depth 32. Measurements are performed using SNIA based metrics.

4. Reliability

OCZ SSD Intrepid 3600 SSDs meets or exceeds SSD endurance and data retention requirements as specified in the JESD218 standard. Reliability specifications are listed in the tables below:

4.1 Endurance Rating

The Endurance Rating of the SSD is represented in TBW, terabyte written by a host to the SSD.

Та	bl	е	6.

Description	I/O Workload Condition	100GB	200GB	400GB	800GB
TBW over product lifetime	4K Random Write ¹	178	356	713	1426

Notes: ¹ TBW is the total amount of data written for entire product lifetime. 1 Terabyte = 1,000,000,000 Byte.

4.2 Reliability Specifications

Table 7.

Parameter	Value
Data Retention	1 year power-off retention once SSD
The time period for retaining data in the NAND at maximum rated endurance	reaches rated write endurance at 40°C
MTBF	
Mean Time Between Failures is estimated based on Telcordia* methodology and demonstrated through Reliability Demonstration Test (RDT).	2,000,000 hours

Error Correction Code (ECC)	
Error-Correcting Code defines the number of correctable symbols for a given size of data.	85 bits correctable per 2K/data path parity protection
Uncorrectable Bit Error Rate (UBER)	
Uncorrectable bit error rate will not exceed one sector in the specified number of bits read. In the unlikely event of a non-recoverable read error, the SSD will report it as a read failure to the host; the sector in error is considered corrupt and is not returned to the host.	1 sector per 1017 bits read with 1 year data retention at the end of life

5. Electrical Characteristics

5.1 Supply Voltage

Table 8.

Description	Min	Max	Unit
Operating Voltage for 5 V $(+/-5\%)^1$	4.75	5.25	V

Notes: ¹ Measurement on highest capacity (800GB), measured device from the initial device power supply application.

5.2 Power Consumption: (5V Supply)

Та	bl	e	9.
		-	•

Mode	Typical	Unit
Active ¹	3.43	W
Idle ²	2	W
Standby/Sleep ³	0.42	W

Notes:

¹ Active mode is measured off power supply using Bench Supply Software for maximum, average and minimum values. IOmeter 2008 is used to measure the values @ QD128 for Random Read/ Write, Sequential Read/Write @ 4K to 256K blocks.

² Idle modes are measured off power supply using Bench Supply Software for maximum, average and minimum values.

³ Standby or Sleep mode is measured off of Power Supply using Bench Supply Software for maximum, average, minimum values. The drive is prepared as boot drive with Windows OS and Sleeper program installed to run "Standby/Sleep" mode. No load is applied to the drive and measurements are obtained from the power supply and Digital Volt Meter reading.

Environmental Specifications 6.

Temperature, Shock, Vibration, Altitude 6.1

Table 10.

Temperature	Range
Case Temperature Operating ¹ Non-operating	0 – 70°C -45 – 85°C
Shock, Vibration, Altitude	Range
Shock ² Operating Non-operating	1000G/0.5ms 1000G/0.5ms
Vibration ³ Operating Non-operating	2.17 GRMS (5-800 Hz) 3.13 GRMS (5-800 Hz)

Altitude ⁴	-1,500 ft. to 15,000 ft.
Operating	1000 ft to 40 000 ft
Non-operating	-1000 ft. to 40,000 ft.

Notes:

Drive

¹As measured by temperature sensor

²Shock specifications assume the SSD is mounted securely with the input vibration applied to the drivemounting screws. Stimulus may be applied in the X, Y or Z axis. Shock specification is measured using Root Mean Squared (RMS) value.

³ Vibration specifications assume the SSD is mounted securely with the input vibration applied to the drive-mounting screws. Stimulus may be applied in the X, Y or Z axis. Vibration specification is measured using RMS value.

⁴Applies to atmospheric pressure only

6.2 Acoustics

The drive has no moving or noise-emitting parts. Therefore, it produces no audible sound (0 dB) in all modes of operation.

6.3 Emissions

The OCZ Intrepid 3600 Series SSD's are compliant to the FCC and CE Emission regulations.

Standards	Description	Results
FCC § 15.107	Conducted Emissions	Compliant
FCC § 15.109	Radiated Emissions	Compliant
EN 55024 § 4.2.1	Electrostatic Discharge EN 61000-4-2	Compliant
EN 55024 § 4.2.2	Electrical Fast Transients EN 61000-4-4	Compliant
EN 55024 § 4.2.3.1	Continuous Radiated Disturbances EN 61000-4-3	Compliant

Table 11.

EN 55024 § 4.2.3.2	Continuous Conducted	Compliant
	Disturbances EN 61000-4-6	
EN 55024 § 4.2.4	Power-frequency Magnetic	N/A
	Fields EN 61000-4-8	
EN 55024 § 4.2.5	Surges EN 61000-4-5	Compliant
EN 55024 § 4.2.6	Voltage Dips and Interruptions	Compliant
	EN 61000-4-11	
EN 55022 § 5	Conducted Emissions	Compliant
EN 55022 § 6	Radiated Emissions	Compliant
EN 61000-3-2	Harmonic Current Emissions	Compliant
FN 61000 2 2		Compliant
EN 61000-3-3	Voltage Fluctuations and Flicker	Compliant

7. Additional Features

7.1 Encryption

The OCZ Intrepid 3600 SSDs features AES-256-bit encryption with automatic hardware encryption to provide protection of all metadata and user's data at all times.

7.2 Power Failure Protection

The Intrepid 3600 SSD supports testing of the power loss capacitor. The status of the power loss protection can be monitored via the SMART attributes. Additionally, Clout can be used to conduct a super capacitor test.

7.3 Level RAID Protection

The Intrepid 3600 SSDs has an internal RAID that provides Block recovery mechanism in the event of catastrophic failures.

7.4 Temperature Monitor and Logging

The Intrepid 3600 SSDs has an internal temperature sensor for monitoring and logging of airflow temperature. The feature can be monitored using SMART attributes.

7.5 Device Activity Signal (DAS) indication

The Intrepid 3600 SSD's DAS LED polarity is set automatically to the default state during manufacturing. The polarity can be inverted in the field using Clout.

8. Performance Optimization

8.1 TRIM

ATA8 Command that provides for the operating system to inform the drive when sectors no longer contains valid data.

Notes: TRIM support requires Operating System support

9. Pin and Signal Descriptions

This section identifies the pin locations and signal descriptions of the OCZ High Performance SSD's.

9.1 Pin Locations

9.2 Hot Plug Support

Hot Plug insertion and removal are supported in the presence of a proper connector and appropriate operating system (OS) support as described in the SATA 2.6 specification. This product supports Asynchronous Signal Recovery and will issue an unsolicited COMINIT when first mated with a powered connector to guarantee reliable detection by a host system without hardware device detection.

9.3 Signal Description Table

Table 12.

	No.	Plug Connector pin definition	
	S1	GND	2 nd mate
	S2	A+	Differential signal A from PHY
Signal	S3	A-	
	S4	GND	2 nd mate
	S5	В-	Differential signal B from PHY
	S6	В+	

	No.	Plug Connector pin definition		
	S7	GND	2 nd mate	
		Key and s	pacing separate signal and power segments	
	P1	V33	3.3V power (Unused)	
	P2	V33	3.3V power (Unused)	
	Р3	V33	3.3V power, pre-charge, 2 nd mate (Unused)	
	Р4	GND	1 st mate	
	Р5	GND	2 nd mate	
	P6	GND	2 nd mate	
	Р7	V5	5V power, pre-charge, 2 nd mate	
Power	Р8	V5	5V power	
	Р9	V5	5V power	
	P10	GND	2 nd mate	
	P11	DAS/DSS	Device Activity Signal	
	P12	GND	1 st mate	
	P13	V12	12V power, pre-charge, 2 nd mate (Unused)	
	P14	V12	12V power (Unused)	
	P15	V12	12V power (Unused)	

10. ATA Support

The OCZ Intrepid 3600 SSD supports ATA-8 features listed in the table below:

Table 13.

D		
1)1	1177	Δ
$\boldsymbol{\nu}$	1 1	C

Feature	ATA-8 Reference
General	4.2
48-bit address	4.4
General purpose logging (GPL)	4.10
Host protected area (HPA)	4.11
Native command queuing (NCQ)	4.15
Power management	4.18
Security	4.20
S.M.A.R.T.	4.21
TRIM	ATA/ATAPI Command Set (ACS-2)

10.1 ATA Command Support

The OCZ Intrepid 3600 SSD supports all the commands described in the table below and complies with ATA-8/ACS-2 specification.

Table 14.

OpCode	Command
C4h	READ MULTIPLE
CAh	WRITE DMA
Ch8	READ DMA
E1h	IDLE IMMEDIATE
E3h	IDLE
E4h	READ BUFFER
E5h	CHECK POWER MODE
E7h	FLUSH CACHE
ECh	IDENTIFY DEVICE
F8h	READ NATIVE MAX ADDRESS

Opcode	Command
E0h	STANDBY IMMEDIATE
EFh	SET FEATURES
70h	SEEK
C6h	SET MULTIPLE MODE
F6h	SECURITY DISABLE PASSWORD
F1h	SECURITY SET PASSWORD
F2h	SECURITY UNLOCK
39h	WRITE MULTIPLE EXT
37h	SET MAX ADDRESS EXT
E2h	STANDBY

OpCode	Command
FEh	VENDOR SPECIFIC COMMAND
00h	NOP
2Fh	READ LOG EXT
06h	DATA SET MANAGEMENT
10h	RECALIBRATE
20h	READ SECTOR(S)
24h	READ SECTOR(S) EXT
25h	READ DMA EXT
27h	READ NATIVE MAX ADDRESS EXT
29h	READ MULTIPLE EXT
30h	WRITE SECTOR(S)
40h	READ VERIFY SECTOR(S)
42h	READ VERIFY SECTOR(S) EXT
60h	READ FPDMA QUEUED
90h	EXECUTE DEVICE DIAGNOSTIC
91h	INITIALIZE DEVICE PAREMETERS
92h	DOWNLOAD MICROCODE

Opcode	Command
F3h	SECURITY ERASE PREPARE
35h	Write DMA EXT
34h	WRITE SECTOR(S) EXT
E6h	SLEEP
3Dh	WRITE DMA FUA EXT
C5h	WRITE MULTIPLE
61h	Write FPDMA Queued
CEh	WRITE MULTIPLE FUA EXT
D0h	SANITARY ERASE (VENDOR SPECIFIC COMMAND)
B0h	SMART
F5h	SECURITY FREEZE LOCK
F9h	SET MAX ADDRESS
F4h	SECURITY ERASE UNIT

10.2 **IDENTIFY Device Data**

The table below shows 256 words (512 bytes) of sector data returned after the host issues an IDENTIFY DEVICE command. All references comply with ACS-2 specification.

Table 15.

Word	Setting	Default Value	Description
0	Μ	0000h	0 = ATA device
1	Х	3FFFh	Obsolete
2	0	C837h	Obsolete
3	Х	0010h	Obsolete
4-5	Х	0h	Retired
6	Х	003Fh	Obsolete
7-8	V	0h	Reserved for assignment by the CFA association
9	Х	0h	Retired
10-19	М	Varies	Serial number (20 ASCII characters)
20-21	Х	0000h FFFFh	Retired
22	Х	3000h	Obsolete
23-26	М	Varies	Firmware revision (8 ASCII characters)
27-46	М	Varies	Model number (40 ASCII characters)
47	М	8010h	Max. number of sectors transferred per interrupt on
			MULTIPLE commands
48	0	4000h	Trusted Computing feature set options
49	М	2F00h	Reserved for IDENTIFY packet device command
50	F	4000h	Capabilities
51-52	Х	0h	Obsolete
53	М	0006h	Word 88 and 70:64 valid
54	Х	3FFFh	Obsolete
55	Х	0010h	Obsolete
56	Х	003Fh	Obsolete
57-58	Х	FC10h	Obsolete
59	М	0110h	Number of sectors transferred per DRQ interrupt on
			MULTIPLE commands
60-61	М	FFFFh OFFFh	Total number of user addressable sectors
62	Х	0h	Obsolete
63	М	0007h	Reserved
64	M	0003h	PIO modes supported (ATA only)
65	Μ	0078h	Minimum Multiword DMA transfer cycle time per word

Word	Setting	Default Value	Description
66	М	0078h	Manufacturer's recommended Multiword DMA transfer
			cycle time
67	Μ	0078h	Minimum PIO transfer cycle time without flow control
68	М	0078h	Minimum PIO transfer cycle time without IORDY flow
			control
69	0	0D00h	Additional supported
70	Х	0h	Reserved
71-74	F	0h	Reserved for the IDENTIFY PACKET DEVICE command
75	0	001Fh	Queue depth support
76	0	010Eh	Serial ATA capabilities
77	F	0006h	Reserved for Serial ATA future definition
78	0	0016h	Serial ATA features supported
79	0	0014h	Serial ATA features enabled
80	М	03C0h	Major Version number
81	М	0000h	Minor Version number
82	М	742Bh	Command and feature sets supported
83	М	5401h	Command and feature sets supported
84	М	4160h	Command and feature sets supported
85	М	7469h	Command and feature sets supported
86	М	9401h	Command and feature sets supported
87	М	4160h	Command and feature sets supported
88	0	407Fh	Ultra DMA Modes
89	0	000Ah	Time required for security erase unit completion
90	0	00C8h	Time required for enhanced security erase completion
91	0	0h	Current advanced power management
92	0	FFFEh	Master password revision code
93	М	0h	Hardware reset result. The contents of bits (12:0) of this
			word shall change only during the execution of a
			hardware reset (see 7.18.7.47)
94	0	0h	Vendor's recommended and actual acoustic
			management value (see 7.18.7.48)
95	0	0h	Stream minimum request size
96	0	Oh	Stream transfer time - DMA
97	0	0h	Streaming access latency – DMA and PIO
98-99	0	0h	Streaming performance granularity

I

24

Word	Setting	Default Value	Description
100-103	0	Varies	Maximum user LBA for 48-bit address feature set
104	0	0h	Streaming transfer time – PIO
105	0	0010h	Reserved
106	0	4000h	Physical sector size/logical sector size
107	0	0h	Inter-seek delay for ISO-7779 acoustic testing in
			microseconds
108-111	М	Varies	World Wide Name
112-115	0	0h	Reserved for World Wide Name extension to 128 bits
116	0	0h	Reserved for INCITS TR-37-2004
117-118	F	0h	Logical sector size (see 7.18.7.61)
119	М	4006h	Commands and feature sets supported
120	М	400Eh	Commands and feature sets supported
121-126	F	0h	Reserved for expanded supported and enable settings
127	Х	0h	Obsolete
128	0	0001h	Security status
129-159	0	0h	Vendor specific
160	0	0h	CFA power mode (see 7.18.7.68)
161-175	0	0h	Reserved for the CompactFlash association
176-205	0	0h	Current media serial number (60 ASCII characters)
206	0	0021h	SCT command transport
207-208	0	0h	Reserved for CE-ATA
209	0	4000h	Alignment of logical blocks within a larger physical block
210-211	0	0h	Write-Read-Verify sector count mode 3 only
212-213	0	0000h 0000h	Write-Read-Verify sector count mode 2 only
214	0	0h	NV cache capabilities
215	0	0h	NV cache size in logical blocks
217	М	0001h	Nominal media rotation rate
218-221	F	0h	Reserved
222	М	107Fh	Transport major revision number
223	М	0h	Transport minor revision number
224-233	F	Oh	Reserved for CE-ATA
234	0	Oh	Minimum number of 512 byte units per DOWNLOAD
235	0	Oh	Maximum number of 512 byte units per DOWNLOAD
256-254	F	0h	Reserved

Drive

Word	Setting	Default Value	Description
255	Μ	Varies	Integrity word

Setting:

F/V/X: Fixed/Variable/Undefined Content

O/M: Optional/Mandatory Requirement

10.3 Power Management Support

The OCZ Intrepid 3600 SDDs supports ATA and SATA power management modes as described below:

10.3.1 ATA Power Modes

The ATA power modes supported by OCZ Intrepid 3600 SSDs are:

- ACTIVE
- IDLE
- STANDBY
- SLEEP

10.3.2 SATA Link Power States

The SATA power states supported by the OCZ Intrepid 3600 SSDs are:

- ACTIVE: PHY Ready, full power, Tx & Rx operational

11. S.M.A.R.T. Attribute Support

This section describes the S.M.A.R.T. (Self-Monitoring Analysis and Reporting Technology) attributes supported by the OCZ Intrepid 3600 SSDs and the corresponding threshold settings.

Table 16.

ID Description Unit	Starting	Increments	Current	Worst
---------------------	----------	------------	---------	-------

05h	Accumulated runtime bad		0	1	NA	NA
	blocks					
09h	Power-On Hours Count	Hour	0	1	NA	NA
0Ch	Power Cycle Count		0	1	NA	NA
64h	Total blocks erased	In # of blocks	0	1	NA	NA
ABh	Available OP block count	%		1	percentage	0
AEh	Power Cycle		0	1	Percentage	NA
	Count(unplanned)				(raw / total	
					power	
					cycle)	
B8h	Factory bad block count		0	1	Percentage	100
	total				(raw / total	
					allowable	
					BB)	
BBh	Total count uncorrectable		0	1	NA	NA
	NAND reads					
	(errors that could not be					
	recovered using ECC)					
BEh	Temperature	In Celsius		1	Raw	NA
C3h	Total programming		0	1	Percentage	100
	failures				(raw / total	
					allowable	
					BB)	
C4h	Total erase failures		0	1	Percentage	100
					(raw / total	
					allowable	
					BB)	
C5h	Total read		0	1	Percentage	100
	failures(uncorrectable)				(raw / total	
					allowable	
					BB)	
C6h	Host reads	In GB	0	1	NA	NA
C7h	Host writes	In GB	0	1	NA	NA
CAh	Total number of read bits	In Number	0	1	NA	NA
	corrected					
CDh	Max rated PE count		0	1	NA	NA
CEh	Min erase count		0	1	Percentage	NA

					(raw / Max	
					PE Count)	
CFh	Max erase count		0	1	Percentage	NA
					(raw / Max	
					PE Count)	
D0h	Average erase count		0	1	Percentage	NA
					(raw / Max	
					PE Count)	
D2h	SATA CRC error count		0	1	NA	NA
D3h	SATA UNC count(not same		0	1	NA	NA
	with uncorrectable NAND					
	read count)					
D4h	Total count NAND page		0	1	NA	NA
	reads requiring read retry					
D5h	Total count simple read		0	1	NA	NA
	retry attempts					
D6h	Total count adaptive read		0	1	NA	NA
	retry attempts					
DDh	Internal data path		0	1	NA	NA
	protection uncorrectable					
	errors					
DEh	RAID recovery count		0	1	NA	NA
E6h	Status flag for super cap	1 when fully	0	1	NA	NA
	charging	charged.				
		0 when not				
		charged.				
		2 when				
		unknown.				
E9h	Lifetime remaining	In Percentage	0	1	Raw	0
F9h	Total NAND programming	In GB	0	1	NA	NA
	count					
FBh	Total NAND read count	In GB	0	1	NA	NA

Mechanical Specifications 12.

Notes:

All dimensions are in millimeters ٠

Glossary 13.

Released January 2014 OCZ CONFIDENTIAL

Drive

Term	Definition			
ATA	Advanced Technology Attachment			
ΑΤΑΡΙ	Advanced Technology Attachment Packet Interface			
DMA	Direct Memory Access			
ECC	Error-Correcting Code			
EXT	Extended			
КВ	KiloByte			
MB	Mega-byte defined as 1x10 ⁶ bytes			
Gb	Gigabit			
GB	Giga-byte defined as 1x10 ⁹ bytes			
ТВ	Terabyte			
TBW	Terabyte Written			
РВ	Petabyte			
GC	Garbage Collection, can be real time or idle time (background)			
HDD	Hard Disk Drive			
	A term used to describe the removal or insertion of a SATA hard drive			
TIOL Flug	when the system is powered on.			
IOPS	Input output operations per second			
LBA	Logical Block Address			
ТҮР	Typical			
MTBF	Mean time between failures			
NCO	Native Command Queuing. The ability of the SATA hard drive to queue and			
NCQ	re-order commands to maximize execution efficiency.			
NOP	No Operation			
OS	Operating System			
Port	The point at which a SATA drive physically connects to the SATA controller.			
P/E	Program / Erase cycles, defines NAND lifecycle			
UBER	Uncorrectable Bit Error Rate			
SAS	Serial Attached SCSI			
SATA	Serial ATA			
SFF	Small Form Factor			

	Self-Monitoring, Analysis and Reporting Technology: an open standard for				
SMART	developing hard drives and software systems that automatically monitors				
	a hard drive's health and reports potential problems.				
SSD	Solid State Drive				
MLC	Multi-level Cell				
eMLC	Enterprise Multi-level Cell				
TDINA	ATA8 Command informing the drive when sectors no longer contain valid				
	data				

14. **Revision History**

Rev.	Date	Ву	Reason For Change
1.0	21-Nov-2013	Product Management	Preliminary Release
1.1	23-Jan-2014	Product Management	Preliminary Release
1.2	20-Feb-2014	Product Management	Final Release